\qquad
\qquad Date \qquad

Practice

16-2

Exponential and Logarithmic Equations

Solve each equation.

1. $8^{2 x}=32$
2. $7^{n}=343$
3. $9^{2 x}=27$
4. $25^{2 n+1}=625$
5. $36^{-2 x+1}=216$
6. $64^{x}=4096$

Solve each equation. Round answers to the nearest hundredth.

7. $5^{2 x}=20$
8. $8^{n+1}=3$
9. $4^{n-2}=3$
10. $4^{3 n}=5$
11. $15^{2 n-3}=245$
12. $4^{x}-5=12$

Solve each equation. Check your answers. Write your answers as a fraction.
13. $\log x=2$
14. $\log 4 x=-1$
15. $\log 3 x=2$
16. $\log 4 x=2$
17. $4 \log x=4$
18. $8 \log x=16$
19. $\log x-\log 4=3$
20. $\log x-\log 4=-2$
21. $2 \log x-\log 4=2$
22. $\log 3 x-\log 5=1$
23. $2 \log x-\log 3=1$
24. $\log 8-\log 2 x=-1$
25. The equation $y=281(1.01)^{x}$ is a model for the population of the United States y, in millions of people, x years after the year 2000. Estimate when the United States population will reach 400 million people.
26. The function $y=1000(1.005)^{x}$ models the value of $\$ 1000$ deposited at an interest rate of 6% per year (0.005 per month) x months after the money is deposited.
a. Use a graph (on your graphing calculator) to predict how many months it will be until the account is worth $\$ 1100$.
b. Predict how many years it will be until the account is worth $\$ 5000$.
27. Suppose the population of a country is currently $8,100,000$. Studies show this country's population is increasing 2% each year.
a. What exponential function would be a good model for this country's population?
b. Using the equation you found in part (a), how many years will it take for the country's population to reach 9 million? Round your answer to the nearest hundredth.
28. Suppose you deposit \$2500 in a savings account that pays you 5\% interest per year.
a. How many years will it take for you to double your money?
b. How many years will it take for your account to reach $\$ 8,000$?

