Practice 12-2 Geometric Sequences

Determine whether each sequence is geometric. If so, find the common ratio.

1. 3, 9, 27, 81,	2. 4, 8, 16, 32,	3. 4, 8, 12, 16,
4. 4, -8, 16, -32,	5. 1, 0.5, 0.25, 0.125,	6. 100, 30, 9, 2.7,
7. -5, 0, 5, 10,	8. 64, -32, 16, -8,	9. 1, 4, 9, 16,

Find the tenth term of each geometric sequence.

10. 2, 4, 8,	11. 1, 3, 9,	12. -2, 6, -18,
13. -3, 9, -27,	14. -3, -12, -48,	15. -5, 25, -125,
16. $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$,	17. 0.3, 0.6, 1.2,	18. $\frac{1}{4}$, $\frac{1}{2}$, 1,

- 19. When a pendulum swings freely, the length of its arc decreases geometrically. Find each missing arc length.
 - **a.** 20th arc is 20 in.; 22nd arc is 18.5 in.
 - **b.** 8th arc is 27 mm; 10th arc is 3 mm
 - c. 5th arc is 25 cm; 7th arc is 1 cm
 - **d.** 100th arc is 18 ft; 98th arc is 2 ft

Find the missing term of each geometric sequence. It could be the geometric mean or its opposite.

20. 4, , 16,	21. 9, 1 6,	22. 2, 2 , 8,
23. 3, , 12,	24. 2, ■ , 50,	25. 4, 2 , 5.76,
26. 625, ■ , 25,	27. $\frac{1}{3}$, ■ , 3,	28. 0.5, ■, 0.125,

Identify each sequence as arithmetic, geometric, or neither. Then find the next two terms.

- **29**. 9, 3, 1, $\frac{1}{3}$, ... **30.** 1, 0, -2, -5, ... **31.** 2, -2, 2, -2, ...
- **32.** -3, 2, 7, 12, ... **33.** 1, -2, -5, -8, ... **34.** 1, -2, 3, -4, ...

Write an explicit formula for each sequence. Then generate the first five terms.

- **35.** $a_1 = 3, r = -2$ **36.** $a_1 = 5, r = 3$ **37.** $a_1 = -1$, r = 4
- **40.** $a_1 = 2187, r = \frac{1}{3}$ **39.** $a_1 = 32$, r = -0.5**38.** $a_1 = -2, r = -3$