\qquad
\qquad
\qquad

Practice

12-2 Geometric Sequences

Determine whether each sequence is geometric. If so, find the common ratio.

1. $3,9,27,81, \ldots$
2. $4,8,16,32, \ldots$
3. $4,8,12,16, \ldots$
4. $4,-8,16,-32, \ldots$
5. $1,0.5,0.25,0.125, \ldots$
6. 100, 30, 9, 2.7, ...
7. $-5,0,5,10, \ldots$
8. $64,-32,16,-8, \ldots$
9. $1,4,9,16, \ldots$

Find the tenth term of each geometric sequence.
10. $2,4,8, \ldots$
11. $1,3,9, \ldots$
12. $-2,6,-18, \ldots$
13. $-3,9,-27, \ldots$
14. $-3,-12,-48, \ldots$
15. $-5,25,-125, \ldots$
16. $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, .$.
17. $0.3,0.6,1.2, \ldots$
18. $\frac{1}{4}, \frac{1}{2}, 1, \ldots$
19. When a pendulum swings freely, the length of its arc decreases geometrically. Find each missing arc length.
a. 20th arc is $20 \mathrm{in} . ; 22 \mathrm{nd}$ arc is 18.5 in .
b. 8th arc is 27 mm ; 10th arc is 3 mm
c. 5 th arc is 25 cm ; 7th arc is 1 cm
d. 100th arc is 18 ft ; 98th arc is 2 ft

Find the missing term of each geometric sequence. It could be the geometric mean or its opposite.
20. 4, \quad, 16, \ldots
21. $9, \ldots, 16, \ldots$
22. $2, \square, 8, \ldots$
23. $3,-12, \ldots$
24. $2, \square, 50, \ldots$
25. 4, , 5.76, ...
26. 625, $, 25, \ldots$
27. $\frac{1}{3}, \square, 3, \ldots$
28. $0.5, \square, 0.125, \ldots$

Identify each sequence as arithmetic, geometric, or neither. Then find the next two terms.
29. $9,3,1, \frac{1}{3}, \ldots$
30. $1,0,-2,-5, \ldots$
31. $2,-2,2,-2, \ldots$
32. $-3,2,7,12, \ldots$
33. $1,-2,-5,-8, \ldots$
34. $1,-2,3,-4, \ldots$

Write an explicit formula for each sequence. Then generate the first five terms.
35. $a_{1}=3, r=-2$
36. $a_{1}=5, r=3$
37. $a_{1}=-1, r=4$
38. $a_{1}=-2, r=-3$
39. $a_{1}=32, r=-0.5$
40. $a_{1}=2187, r=\frac{1}{3}$

