\qquad
\qquad

LEsson Graphing Logarithmic Functions

Practice and Problem Solving: A/B

Graph each function. Find the asymptote. Tell how the graph is transformed from the graph of its parent function.

1. $f(x)=\log _{2} x+4$

2. $f(x)=\log (x+5)$

3. $f(x)=2.5 \log _{2}(x+7)-3$

4. $f(x)=3 \log _{4}(x+6)$

5. $f(x)=3+\ln x$

6. $f(x)=-0.8 \ln (x-1.5)+2$

\qquad
\qquad
\qquad

Write each transformed function.

7. The function $f(x)=\log (x+1)$ is reflected across the x-axis and translated down 4 units.
8. The function $f(x)=\log _{8}(x-3)$ is compressed vertically by a factor of $\frac{2}{5}$ and translated up 11 units. \qquad
9. The function $f(x)=-\log _{9}(x+4)$ is translated 4 units right and 1 unit down and vertically stretched by a factor of 7 . \qquad
10. The function $f(x)=3 \ln (2 x+8)$ is vertically stretched by a factor of 3 , translated 7 units up, and reflected across the x-axis. \qquad
11. The function $f(x)=-\log (5-x)-2$ is translated 6 units left, vertically compressed by a factor of $\frac{1}{3}$, and reflected across the x-axis. \qquad
12. The function $f(x)=8 \log _{7} x-5$ is compressed vertically by a factor of 0.5 , translated right 1 unit, and reflected across the x-axis.
13. What transformations does the function $f(x)=-\ln (x+1)-2$ undergo to become the function $g(x)=\ln (x-1)$?

Solve.

14. The function $A(t)=P e^{r t}$ is used to calculate the balance, A, of an investment in which the interest is compounded continuously at an annual rate, r, over t years. Find the inverse of the formula. Describe what information the inverse gives.
15. The function $A(t)=P e^{r t}$ is used to calculate the balance, A, of an investment where the interest is compounded continuously at an annual rate, r, over t years. Find the inverse of the formula. Then use it to determine the amount of time it will take a $\$ 27,650$ investment at 3.95% to reach a balance of $\$ 50,000$.
