\qquad
\qquad Date \qquad

Practice

10.1 Graphing Radical Functions

Graph each function. Show the table of values for each graph.

1. $y=\sqrt{x+3}$
2. $y=\sqrt{x}-1$
3. $y=\sqrt{x+5}$
4. $y=-\sqrt[3]{x}+2$
5. $y=2 \sqrt[3]{x-3}$
6. $y=\sqrt[3]{x+3}-1$

Rewrite each function to make it easy to graph using transformations of its parent function. Describe the graph. (Do not graph)
7. $y=\sqrt{81 x+162}$
8. $y=-\sqrt{4 x+20}$
9. $y=\sqrt[3]{125 x-250}$
10. $y=-\sqrt{64 x+192}$
11. $y=-\sqrt[3]{8 x-56}+4$
12. $y=\sqrt{25 x+75}-1$

Solve the following problems. (Round your answers to the nearest tenth)
13. To find the radius r of a sphere of volume V, use the equation $r=\sqrt[3]{\frac{3 V}{4 \pi}}$.

A balloon used for advertising special events has a volume of $225 \mathrm{ft}^{3}$. What is the radius of the balloon?
14. An exercise specialist has studied your exercise routine and says the formula $t=1.85 \sqrt{c+10}$ expresses the amount of time t, in minutes, it takes you to burn c calories (cal) while exercising.

According to this formula, how long should it take you to burn 100 cal? 200 cal? 300 cal?
15. You can use the equation $t=\frac{1}{4} \sqrt{d}$ to find the time t, in seconds, it takes an object to fall d feet after being dropped.

How long does it take the object to fall 400 feet?

