Practice

Graphing Radical Functions

Graph each function. Show the table of values for each graph.

1.
$$y = \sqrt{x+3}$$

2.
$$y = \sqrt{x} - 1$$

3.
$$v = \sqrt{x+5}$$

4.
$$v = -\sqrt[3]{x} + 2$$

5.
$$y = 2\sqrt[3]{x-3}$$

6.
$$y = \sqrt[3]{x+3} - 1$$

Rewrite each function to make it easy to graph using transformations of its parent function. Describe the graph. (Do not graph)

7.
$$y = \sqrt{81x + 162}$$

8.
$$y = -\sqrt{4x + 20}$$

7.
$$y = \sqrt{81x + 162}$$
 8. $y = -\sqrt{4x + 20}$ **9.** $y = \sqrt[3]{125x - 250}$

10.
$$y = -\sqrt{64x + 192}$$

10.
$$y = -\sqrt{64x + 192}$$
 11. $y = -\sqrt[3]{8x - 56} + 4$ **12.** $y = \sqrt{25x + 75} - 1$

12.
$$y = \sqrt{25x + 75} - 1$$

Solve the following problems. (Round your answers to the nearest tenth)

13. To find the radius r of a sphere of volume V, use the equation $r = \sqrt[3]{\frac{3V}{4\pi}}$.

A balloon used for advertising special events has a volume of 225 ft³. What is the radius of the balloon?

14. An exercise specialist has studied your exercise routine and says the formula $t = 1.85\sqrt{c+10}$ expresses the amount of time t, in minutes, it takes you to burn c calories (cal) while exercising.

According to this formula, how long should it take you to burn 100 cal? 200 cal? 300 cal?

15. You can use the equation $t = \frac{1}{4}\sqrt{d}$ to find the time t, in seconds, it takes an object to fall d feet after being dropped.

How long does it take the object to fall 400 feet?