Properties Properties of Exponents

•
$$a^0 = 1, a \neq 0$$

• $\frac{a^m}{a^n} = a^{m-n}$

•
$$a^{-n} = \frac{1}{a^n}$$

• $(ab)^n = a^n b^n$
• $(a^m)^n = a^{mn}$

•
$$(ab)^n = a^nb^n$$

•
$$a^m \cdot a^n = a^{m+n}$$

•
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Roots & Radicals

Number	Squared	Square Root
1	1	1
2	4	2
3	9	3
4	16	4
5	25	5
6	36	6
7	49	7
8	64	8
9	81	9
10	100	10
11	121	11
12	144	12
13	169	13

$$_{3}$$
 x

Number	Cube	Cube Root
1	1	1
2	8	2
3	27	3
4	64	4
5	125	5
6	216	6
7	343	7
8	512	8
9	729	9
10	1000	10
11	1331	11
12	1728	12
13	2197	13

Properties Properties of Exponents

•
$$a^0 = 1, a \neq 0$$

•
$$\frac{a^{m}}{a^n} = a^{m-n}$$

•
$$a^{-n} = \frac{1}{a^n}$$

•
$$(ab)^n = a^n b^n$$

•
$$(a^m)^n = a^{mn}$$

$$\bullet \quad a^m \cdot a^n = a^{m+n}$$

•
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Example

Simplify and rewrite each expression using only positive exponents.

 $= -15a^{-1}$

 $=\frac{-15}{a}$, or $-\frac{15}{a}$

a.
$$(5a^3)(-3a^{-4})$$

b.
$$(-4x^{-3}y^5)^2$$

a.
$$(5a^3)(-3a^{-4})$$

$$(-4x^{-3}y^5)^2$$

$$-3y^{3})^{2}$$

$$(5a^3)(-3a^{-4}) = 5(-3)a^{(3+(-4))} (-4x^{-3}y^5)^2 = (-4)^2(x^{-3})^2(y^5)^2$$

$$= 16x^{-6}y^{10}$$
$$= \frac{16y^{10}}{6}$$

c.
$$\frac{4ab^6c^3}{a^5bc^3}$$

$$\frac{4ab^6c^3}{a^5bc^3} = 4a^{(1-5)}b^{(6-1)}c^{(3-3)}$$
$$= 4a^{-4}b^5c^0$$

$$= \frac{4b^5}{a^4}$$

Example

Think

What does the denominator of the fractional exponent represent?

The denominator of the fraction is the index of the radical.

What is the simplified form of each expression?

$$216^{\bar{3}}$$

$$216^{\frac{1}{3}} = \sqrt[3]{216}$$
 Rewrite as radicals.
$$7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}} = \sqrt{7} \cdot \sqrt{7}$$
 this problem by adding the exponents.
$$= \sqrt[3]{6^3}$$

$$= \sqrt{7 \cdot 7}$$

$$7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}} = 7^{\frac{1}{2} + \frac{1}{2}} = 7^1 = 7$$

$$=\sqrt[3]{6^3}$$

$$= 6$$

$$\mathbf{B} \ 7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}}$$

$$7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}} = \sqrt{7} \cdot \sqrt{7}$$

$$=\sqrt{7\cdot7}$$

You can also solve

$$7^{\frac{1}{2}} \cdot 7^{\frac{1}{2}} = 7^{\frac{1}{2} + \frac{1}{2}} = 7^1 = 7$$