_ Class___

Date

16-2 Practice Natural Logarithms

Write each expression as a single natural logarithm.

 1. $\ln 16 - \ln 8$ 2. $3 \ln 3 + \ln 9$ 3. $a \ln 4 - \ln b$

 4. $\ln z - 3 \ln x$ 5. $\frac{1}{2} \ln 9 + \ln 3x$ 6. $4 \ln x + 3 \ln y$

 7. $\frac{1}{3} \ln 8 + \ln x$ 8. $3 \ln a - b \ln 2$ 9. $2 \ln 4 - \ln 8$

Solve each equation. Check your answers. Round your answer to the nearest hundredth.

10. $4 \ln x = -2$	11. 2 ln $(3x - 4) = 7$	12. 5 ln $(4x - 6) = -6$
13. $-7 + \ln 2x = 4$	14. $3 - 4 \ln (8x + 1) = 12$	15. $\ln x + \ln 3x = 14$
16. 2 $\ln x + \ln x^2 = 3$	17. $\ln x + \ln 4 = 2$	18. $\ln x - \ln 5 = -1$
19. $\ln e^x = 3$	20. $3 \ln e^{2x} = 12$	21. $\ln e^{x+5} = 17$
22. $\ln 3x + \ln 2x = 3$	23. 5 ln $(3x - 2) = 15$	24. 7 ln $(2x + 5) = 8$
25. $\ln(3x+4) = 5$	26. $\ln \frac{2x}{41} = 2$	27. $\ln (2x-1)^2 = 4$

Use natural logarithms to solve each equation. Round your answer to the nearest hundredth.

28. $e^x = 15$	29. $4e^x = 10$	30. $e^{x+2} = 50$	31. $4e^{3x-1} = 5$
32. $e^{x-4} = 2$	33. $5e^{6x+3} = 0.1$	34. $e^x = 1$	35. $e^{\frac{x}{5}} = 32$
36. $3e^{3x-5} = 49$	37. $7e^{5x+8} = 0.23$	38. $6 - e^{12x} = 5.2$	39. $e^{\frac{x}{5}} = 25$
40. $e^{2x} = 25$	41. $e^{\ln 5x} = 20$	42. $e^{\ln x} = 21$	43. $e^{x+6} + 5 = 1$

By measuring the amount of carbon-14 in an object, a paleontologist can determine its approximate age. The amount of carbon-14 in an object is given by $y = ae^{-0.00012t}$, where *a* is the amount of carbon-14 originally in the object, and *t* is the age of the object in years.

- **44.** A fossil of a bone contains 32% of its original carbon-14. What is the approximate age of the bone?
- **45**. A fossil of a bone contains 83% of its original carbon-14. What is the approximate age of the bone?