11_1 Practice

Roots and Radical Expressions

Find each real root.

1. $\sqrt{144}$

2. $-\sqrt{25}$

3. $\sqrt{-0.01}$

4. $\sqrt[3]{0.001}$

5. $\sqrt[4]{0.0081}$

6. $\sqrt[3]{27}$

7. $\sqrt[3]{-27}$

8. $\sqrt{0.09}$

Simplify each radical expression. Use absolute value symbols when needed.

9. $\sqrt{81x^4}$

10. $\sqrt{121y^{10}}$

11. $\sqrt[3]{8g^6}$

12. $\sqrt[3]{125x^9}$

13. $\sqrt[5]{243x^5y^{15}}$

14. $\sqrt[3]{(x-9)^3}$

15. $\sqrt{25(x+2)^4}$

16. $\sqrt[3]{\frac{64x^9}{343}}$

17. $\sqrt[3]{-0.008}$

18. $\sqrt[4]{\frac{x^4}{81}}$

19. $\sqrt{36x^2y^6}$

20. $\sqrt[4]{(m-n)^4}$

- **21.** A cube has volume $V = s^3$, where s is the length of a side. Find the side length for a cube with volume 8000 cm³.
- **22.** The temperature *T* in degrees Celsius (°C) of a liquid *t* minutes after heating is given by the formula $T = 8\sqrt{t}$. When is the temperature 48°C?
- **23.** The number of new customers n that visit a dry cleaning shop in one year is directly related to the amount a (in dollars) spent on advertising. This relationship is represented by $n^3 = 13,824a$. To attract 480 new customers, how much should the owners spend on advertising during the year?
- **24. Geometry** The volume *V* of a sphere with radius *r* is given by the formula $V = \frac{4}{3}\pi r^3$.
 - **a.** What is the radius of a sphere with volume 36π cubic inches?
 - **b.** If the volume increases by a factor of 8, what is the new radius?
- **25.** A clothing manufacturer finds the number of defective blouses d is a function of the total number of blouses n produced at her factory. This function is $d = 0.000005n^2$.
 - **a.** What is the total number of blouses produced if 45 are defective?
 - **b.** If the number of defective blouses increases by a factor of 9, how does the total number of blouses change?