LESSON 3-1

Solving Quadratic Equations by Taking Square Roots

Practice and Problem Solving: A/B

For Problems 1–3, solve the equation $-2x^2 + 7 = -1$ using the indicated method. Show your work.

1. Solve by graphing.

- 2. Solve by factoring.
- 3. Solve by taking square roots.

Find the square of each imaginary number.

this equation for Problems 10-11.

4. 4*i*

5. $i\sqrt{11}$

 $6. \ \frac{i\sqrt{7}}{3}$

Determine whether each equation has real or imaginary solutions by solving.

7.
$$7x^2 - 12 = 0$$

8.
$$x^2 + 9 = 3$$

9.
$$2(x^2-1)=(x^2-3)$$

Recall the equation for falling objects: $h(t) = h_0 - 16t^2$, where h is the height of the object, in feet, at any time t, in seconds, and h_0 is the object's initial height in feet. Use

- 10. A carpenter dropped a hammer from a rooftop 48 feet above ground. How long did it take the hammer to hit the ground?
- 11. An acorn fell from a branch 20 feet high and landed on a branch 7 feet high. How long did it take the acorn to fall?

3-1

Solving Quadratic Equations by Taking Square Roots

Practice and Problem Solving: C

For Problems 1–3, solve the equation $\frac{1}{2}x^2 - 3 = 5$ using the indicated method. Show your work.

- 12. Solve by graphing.
- 13. Solve by factoring.
- 14. Solve by taking square roots.

Find the square of each imaginary number.

16.
$$2i\sqrt{97}$$

17.
$$-\frac{3i\sqrt{21}}{5}$$

Determine whether each equation has real or imaginary solutions by solving.

18.
$$\frac{1}{3}x^2 + 15 = -21$$

19.
$$-15x^2 + 44 = 2$$

20.
$$6(3x^2-1)=3(5x^2-7)$$

Solve.

21. The length of a rectangular garden is 4 times its width. The area is 102 square feet. What are the dimensions of the garden?

22. A rock fell from a cliff 108 feet high and landed on an embankment 25 feet from the ground. Use the equation $h = \frac{1}{2} \times 16 \times t^2$ to find how long it took the rock to fall to the embankment?