\qquad
\qquad Class \qquad

LESSON
 3-1
 Solving Quadratic Equations by Taking Square Roots Practice and Problem Solving: A/B

For Problems 1-3, solve the equation $-2 x^{2}+7=-1$ using the indicated method. Show your work.

1. Solve by graphing. 2. Solve by factoring.

2. Solve by taking square roots.

Find the square of each imaginary number.
4. $4 i$
5. $i \sqrt{11}$
6. $\frac{i \sqrt{7}}{3}$

Determine whether each equation has real or imaginary solutions by solving.
7. $7 x^{2}-12=0$
8. $x^{2}+9=3$
9. $2\left(x^{2}-1\right)=\left(x^{2}-3\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Recall the equation for falling objects: $h(t)=h_{0}-16 t^{2}$, where h is the height of the object, in feet, at any time t, in seconds, and h_{0} is the object's initial height in feet. Use this equation for Problems 10-11.
10. A carpenter dropped a hammer from a rooftop 48 feet above ground. How long did it take the hammer to hit the ground?
11. An acorn fell from a branch 20 feet high and landed on a branch 7 feet high. How long did it take the acorn to fall?

${ }_{\substack{\text { Lesson } \\ 3-1}}$ Solving Quadratic Equations by Taking Square Roots

 Practice and Problem Solving: CFor Problems 1-3, solve the equation $\frac{1}{2} x^{2}-3=5$ using the indicated method. Show your work.
12. Solve by graphing.

13. Solve by factoring.
14. Solve by taking square roots.
\qquad
Find the square of each imaginary number.
15. $-21 i$
16. $2 i \sqrt{97}$
17. $-\frac{3 i \sqrt{21}}{5}$

Determine whether each equation has real or imaginary solutions by solving.
18. $\frac{1}{3} x^{2}+15=-21$
19. $-15 x^{2}+44=2$
20. $6\left(3 x^{2}-1\right)=3\left(5 x^{2}-7\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Solve.
21. The length of a rectangular garden is 4 times its width. The area is 102 square feet. What are the dimensions of the garden?
\qquad
22. A rock fell from a cliff 108 feet high and landed on an embankment 25 feet from the ground. Use the equation $h=\frac{1}{2} \times 16 \times t^{2}$ to find how long it took the rock to fall to the embankment? \qquad

