\qquad
\qquad Class \qquad

Lesson The Base e
 13-3

Practice and Problem Solving: A/B

Given the function of the form $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{e}^{\boldsymbol{x}-\boldsymbol{h}}+\boldsymbol{k}$
a. Identify a, h, and k.
b. Identify and plot the reference points.
c. Draw the graph.
d. State the domain and range in set notation.

1. $g(x)=2 e^{x}-4$
a. \qquad
b. \qquad
c.

d. \qquad
2. $g(x)=\frac{1}{5} e^{x-3}-4$
a. \qquad
b. \qquad
c.

d. \qquad
3. $g(x)=e^{x-5}+3$
a. \qquad
b. \qquad
c.

d. \qquad
4. $g(x)=-4 e^{x+2}+6$
a. \qquad
b. \qquad
c.

d. \qquad
5. $g(x)=0.5 e^{x+4}-1$
a. \qquad
b. \qquad
C.

d. \qquad
6. $g(x)=-0.75 e^{x-5}+2.5$
a. \qquad
b. \qquad
c.

d. \qquad
\qquad
\qquad
\qquad

LEsson The Base e
 13-3
 Practice and Problem Solving: A/B

Solve.

7. When interest is compounded continuously, the amount A in an account after t years is found using the formula $A=P e^{r t}$, where P is the amount of principal and r is the annual interest rate. Ariana has a choice of two investments that are both compounded continuously. She can invest \$12,000 at 5% for 8 years, or she can invest $\$ 9000$ at 6.5% for 7 years. Which investment will result in the greater amount of interest earned?
8. Use the natural decay function, $N(t)=N_{0} e^{-k t}$, to find the decay rate and the age of a fossil containing 35% of the original amount of a particular substance, given that the substance has a half-life of 2450 years.
9. When interest is compounded continuously, the amount A in an account after t years is found using the formula $A=P e^{t}$, where P is the amount of principal and r is the annual interest rate.
a. Use the formula to compute the balance of an investment that had a principal amount of $\$ 4500$ and earned 5\% interest for 6 years.
b. What is the amount of interest earned in the investment?
10. Use the natural decay function, $N(t)=N_{0} e^{-k t}$, to find the decay constant, k, for a substance that has a half-life of 1000 years.
