LESSON

Angles of Rotation and Radian Measure

Practice and Problem Solving: A/B

Draw an angle with the given measure in standard position.

Find the measures of a positive angle and a negative angle that are coterminal with each given angle.

4.
$$\theta = 425^{\circ}$$

5.
$$\theta = -316^{\circ}$$

6.
$$\theta = -800^{\circ}$$

7.
$$\theta = 281^{\circ}$$

8.
$$\theta = -4^{\circ}$$

9.
$$\theta = 743^{\circ}$$

Convert each measure from degrees to radians or from radians to degrees.

10.
$$\frac{5\pi}{12}$$

12.
$$-\frac{29\pi}{18}$$

14.
$$\frac{5\pi}{3}$$

15.
$$-\frac{7\pi}{6}$$

Solve.

16. San Antonio, Texas, is located about 30° north of the equator. If Earth's radius is about 3959 miles, approximately how many miles is San Antonio from the equator?

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

LESSON

Defining and Evaluating the Basic Trigonometric Functions

Practice and Problem Solving: A/B

Find the measure of the reference angle for each given angle.

1.
$$\theta = 220^{\circ}$$

$$2. \ \theta = \frac{11\pi}{6}$$

3.
$$\theta = -235^{\circ}$$

4.
$$\theta = -\frac{2\pi}{3}$$

6.
$$\theta = -\frac{13\pi}{4}$$

Find the exact value of each trigonometric function.

8.
$$\sin \frac{4\pi}{3}$$

11.
$$\cos \frac{9\pi}{2}$$

12.
$$\tan -\frac{5\pi}{6}$$

Use a calculator to evaluate each trigonometric function. Round to four decimal places.

14.
$$\tan \frac{7\pi}{9}$$

15.
$$\sin -\frac{8\pi}{3}$$

18.
$$\cos -\frac{21\pi}{5}$$

Solve. Assume each circle is centered at 0.

- 19. Find the exact coordinates of the point on a circle of radius 12.5 at an angle of 180°.
- 20. Find the exact coordinates of the point on a circle of radius 7 at an angle of $\frac{5\pi}{4}$.

LESSON 17-3

Using a Pythagorean Identity

Practice and Problem Solving: A/B

Use the given value to calculate the values of the indicated trigonometric functions. Round your answers to three decimal places.

- 1. Given that $\cos \theta \approx 0.707$, where $0 < \theta < \frac{\pi}{2}$, find $\sin \theta$.
- 2. Given that sin $\theta \approx -0.866$, where $\pi < \theta < \frac{3\pi}{2}$, find cos θ .
- 3. Given that tan $\theta \approx$ 1.072, where $0 < \theta < \frac{\pi}{2}$, find the values of sin θ and cos θ .
- 4. Given that $\cos \theta \approx -0.485$, where $\frac{\pi}{2} < \theta < \pi$, find $\sin \theta$.
- 5. Given that tan $\theta \approx -0.087$, where $\frac{3\pi}{2} < \theta < 2\pi$, find the values of sin θ and cos θ .
- 6. Given that sin $\theta = 0.5$, where $\frac{\pi}{2} < \theta < \pi$, find cos θ .
- 7. Given that sin $\theta \approx -0.829$, where $\pi < \theta < \frac{3\pi}{2}$, find cos θ .

Solve.

8. The instant at which a waxed wood block on an inclined plane of wet snow begins to slide is represented by the equation $mg \sin \theta = \mu mg \cos \theta$, where θ represents the angle of the plane and μ is the coefficient of friction. What is $\cos \theta$ if $\mu = 0.52$ and $\sin \theta \approx 0.461$?