\qquad Class \qquad Date \qquad

$$
\text { 5-9 } \begin{array}{ll}
\text { Practice } & \text { Form G } \\
\text { Transforming Polynomial Functions } &
\end{array}
$$

Determine the cubic function that is obtained from the parent function $y=x^{3}$ after each sequence of transformations.

1. a reflection in the x-axis; a vertical translation 3 units down; and a horizontal translation 2 units right
2. a vertical stretch by a factor of $\frac{1}{3}$; a reflection in the y-axis; and a vertical translation 6 units up
3. a vertical stretch by a factor of 4; a reflection in the x-axis; and a horizontal translation $\frac{1}{2}$ unit left
4. a vertical stretch by a factor of 3; a reflection in the x-axis; a vertical translation 2 units down; and a horizontal translation 2 units left

Find all the real zeros of each function.
5. $y=2(x+1)^{3}-3$
6. $y=-3(x-2)^{3}+24$
7. $y=-\frac{1}{2}(x+4)^{3}-1$
8. $y=8(-x-2)^{3}+5$
9. $y=-(x+5)^{3}+1$
10. $y=4(x-6)^{3}-2$

Find a quartic function with the given x-values as its only real zeros.
11. $x=2$ and $x=8$
12. $x=3$ and $x=-1$
13. $x=1$ and $x=3$
14. $x=-2$ and $x=6$
15. $x=5$ and $x=-2$
16. $x=-1$ and $x=2$
17. $x=-3$ and $x=-5$
18. $x=-4$ and $x=4$
19. Physics If you stretch a spring to 5 ft , it has $310 \mathrm{ft}-\mathrm{lb}$ of potential energy $(P E)$. Potential energy varies directly as the square of the stretched length (l). The potential energy can be represented by the formula $P E=\frac{1}{2} k l^{2}$, where k is the spring constant.
a. What is the value of the spring constant for this spring?
b. How many ft-lbs of $P E$ would an 8 ft length of spring have?

